EQUAÇÃO DE GRACELI PARA ESPALHAMENTO, FUNDAMENTADA NA:
G ψ = E ψ = IGFF E [tG+].... .C [ + =.
= + 1/ /A equação de Lippmann–Schwinger (em homenagem a Bernard Lippmann e Julian Schwinger[1]) é uma das equações mais utilizadas para descrever colisões de partículas – ou, mais precisamente, de espalhamento – na mecânica quântica. Pode ser usado para estudar o espalhamento das moléculas, átomos, nêutrons, fótons ou quaisquer outras partículas e é importante principalmente para o estudo de física óptica, atômica e molecular, física nuclear e física de partículas, mas também para os problemas de espalhamento em geofísica. Ela refere-se a função de onda espalhada com a interação que produz o espalhamento (potencial espalhador) e, por conseguinte, permite o cálculo dos parâmetros experimentais relevantes (amplitude de espalhamento e a sessão de choque).
A equação mais fundamental para descrever qualquer fenômeno quântico, incluindo o espalhamento, é a equação de Schrödinger. Em problemas físicos esta equação diferencial deve ser resolvida com a entrada de um conjunto adicional de condições iniciais e/ou condições de contorno para o sistema físico estudado. A equação de Lippmann-Schwinger é equivalente à equação Schrödinger mais as condições de contorno para problemas típicos de espalhamento. A fim de incorporar as condições de contorno, a equação Lippmann-Schwinger deve ser escrita como uma equação integral.[2] Para problemas de espalhamento, a equação de Lippmann-Schwinger muitas vezes é mais conveniente do que a equação de Schrödinger.
A equação de Lippmann-Schwinger é, de forma geral, (na verdade são duas equações mostrados abaixo, uma para e outra para ):
Nas equações acima, é a função de onda de todo o sistema (os dois sistemas considerados como um todo colidem) em um tempo infinito antes da interação; e , em um tempo infinito após a interação (a "função de onda espalhada"). O potencial de energia descreve a interação entre os dois sistemas em colisão. O Hamiltoniano descreve a situação em que os dois sistemas estão infinitamente distantes e não interagem. As suas autofunções são e seus autovalores são as energias . Finalmente, é uma questão técnica matemática utilizada para o cálculo das integrais necessárias para resolver a equação e não tem nenhum significado físico.
MECÂNCIA GENERALIZADA GRACELI DE INTERAÇÕES E TRANSFORMAÇÕES.
LEI -
TODA INTERAÇÃO LEVA A TRANSFORMAÇÕES, E VICE-VERSA.
INTERAÇÕES COMO E EM:
NAS INTERAÇÕES DAS FORÇAS FUNDAMENTIAS.
INTERAÇÕES DE SPIN - ÓRBITA.
ESTRUTURA - TEMPERATURA.
DISTRIBUIÇÃO ELETRÔNICA - NÍVEIS DE ENERGIA - BANDAS.
ELÉTRONS - FÓNOS.
ELÉTRONS - ELÉTRONS.
ESTADO QUÂNTICO - NÚMERO QUÃNTICO.
ENTROPIA -TEMPERATURA - MOVIMENTO BROWNIANO - CAMINHOS DE PARTÍCIULAS.
CATEGORIA - DIMENSÕES - FENÔMENOS [NO SISTEMA SDCTIE GRACELI].
ENTROPIA - ENTALPIA. ETC.
VEJAMOS AS INTERAÇÕES DE CAMPOS.
E EM RELAÇÃO AO SISTEMA DE MECÂNICA GENERALIZADO GRACELI.
eletromagnetismo quântico químico relativístico Graceli.
MECÂNICA DO SISTEMA DIMENSIONAL GRACELI.
ONDE A MAIORIA DOS FENÔMENOS FÍSICOS [EM TODAS AS ÁREAS] VARIAM CONFORME O SISTEMA DIMENSIONAL GRACELI.
SENDO ELE;
EQUAÇÃO GERAL DE GRACELI.[quantização de Graceli].
G ψ = E ψ = IGFF E [tG+].... .. =
G ψ = E ψ = IGFF E [tG+]ψ ω /c] = [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] [ q G*]ψ μ / h/c ψ(x, t) x [ t ]..
[ G ψ = E ψ = IGFF E [tG+].... ..
q [tG*] ==SISTEMA GRACELI DE:
TENSOR [tG+] GRACELI = IGFF + SDCTIE GRACELI, DENSIDADE DE CARGA E DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIA, NÚMERO E ESTADO QUÂNTICO. + POTENCIAL DE SALTO QUÂNTICO RELATIVO AOS ELEMENTOS QUÍMICO COM O SEU RESPECTIVO E ESPECÍFICO NÍVEL DE ENERGIA., POTENCIAL DE ENERGIA, POTENCIAL QUÍMICO, SISTEMA GRACELI DO INFINITO DIMENSIONAL.
ONDE A CONFIGURAÇÃO ELETRÔNICA TAMBÉM PASSA A SER DIMENSÕES FÍSICO-QUÍMICA DE GRACELI.
[
q [tG*] = energia quântica Graceli.
Comentários
Postar um comentário